LIMSI-COT at SemEval-2017 Task 12 Neural Architecture for Temporal Information Extraction from Clinical Narratives

<u>Julien Tourille</u>^{1,2,3}, Olivier Ferret⁴, Xavier Tannier^{1,2,3}, Aurélie Névéol^{1,3}

 1 LIMSI, CNRS 2 Univ. Paris-Sud 3 Université Paris-Saclay 4 CEA, LIST, Gif-sur-Yvette, F-91191 France

SemEval Workshop 2017 - Vancouver - August 4, 2017

Overview

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

1. Task Description

- 2. Medical Event and Temporal Expression Extraction
- Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

Subtasks and Phases

Subtasks

- Medical event (EVENT) and temporal expression (TIMEX3) extraction
 - spans + attributes (type, modality, degree, polarity for EVENTs and class for TIMEX3s)
- 2. Temporal relation extraction
 - ▶ **Document Creation Time** (DCT) **relations** between EVENTs and documents (*Before*, *Before-Overlap*, *Overlap*, *After*)
 - ► Containment relation extraction between EVENTs and/or TIMEX3s

Phases (domain adaptation)

- Unsupervised: source and target domain are different
- 2. Semi-supervised: a little training data is given for the target domain

Subtasks and Phases

Subtasks

- Medical event (EVENT) and temporal expression (TIMEX3) extraction
 - spans + attributes (type, modality, degree, polarity for EVENTs and class for TIMEX3s)
- 2. Temporal relation extraction
 - Document Creation Time (DCT) relations between EVENTs and documents (Before, Before-Overlap, Overlap, After)
 - ► Containment relation extraction between EVENTs and/or TIMEX3s

Phases (domain adaptation)

- 1. Unsupervised: source and target domain are different
- 2. Semi-supervised: a little training data is given for the target domain

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 4 Containment Relation Extraction

5 / 22

Methodology

- Named Entity Recognition task (EVENT and TIMEX3 entities)
- Sequence labeling problem where each token of a given sentence is assigned a label.
- ▶ IOB format (Inside, Outside, Beginning)
 - ▶ *Type* attribute for medical events (3 types \rightarrow 7 IOB labels)
 - ightharpoonup Class attribute for temporal expressions (6 classes ightarrow 13 IOB labels)
- Two separate models for EVENT and TIMEX3 entities

```
The last time the dose was increased was in February 2010 .

O B-Date I-Date O B-N/A O B-N/A O B-Date I-Date O
```

Network Architecture

Figure: EVENT and TIMEX3 extraction - BiLSTM-CRF architecture

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

Attribute Classification - Pipeline Structure

- Attribute (modality, degree, polarity, type, class) and DCT relation extraction seen as supervised classification problems
- ► Common pipeline structure: optimization via cross-validation of *C*, number of features to keep and windows around entities via a Tree-structured Parzen Estimator approach (Bergstra et al. 2011)
- Lexical, contextual and structural features

Figure: Attribute classification - Optimization Pipeline

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

Methodology

- Relation extraction between two entities e1 and e2 (left to right)
 - e1 temporally contains e2
 - ▶ e1 *is* temporally *contained* by e2
 - ▶ there is no temporal containment relation between e1 and e2
- One model for EVENT-EVENT, EVENT-TIMEX3 and TIMEX3-TIMEX3 relations
- ► Two models for within- and cross-sentence relations

Figure: Within-sentence relation example

Network Architecture (Tourille et al. 2017)

The [last time the dose was increased] was in February 2010

Figure: Containment relation extraction - System architecture

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction

5. Input Embedding

- 6. Domain Adaptation
- 7. Results

Feeding the Networks

Preprocessing

- ► cTAKES (Savova et al. 2010): Sentence and token boundaries, token type, semantic type
- ▶ HeidelTime (Strötgen et al. 2015)

Concatenation

- a character-based embedding
- a pre-computed word embedding on MIMIC-III corpus (Johnson et al. 2016)
- one embedding per gold standard attribute (DCT and CONTAINS subtasks)
- one embedding per cTAKES and HeidelTime attribute (EVENT and TIMEX3 subtasks)

Network Architecture

Figure: Input embeddings - System architecture

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

Strategies

Phase 1 (no target domain data)

- STATIC Block further tuning of the word embeddings during network training
- 2. **REPLACE** Randomly replace tokens from event entities with the 'unknown' token \rightarrow force the network to use context
- ightarrow No strategy applied for TIMEX3

Phase 2 (a little target domain data)

- 1. ALL Mix both domain and target data with stratified randomization
- 2. **30-30** Match the number of target domain documents with an equal number of source domain documents → Balanced training corpus

Strategies

Phase 1 (no target domain data)

- STATIC Block further tuning of the word embeddings during network training
- 2. **REPLACE** Randomly replace tokens from event entities with the 'unknown' token \rightarrow force the network to use context
- ightarrow No strategy applied for TIMEX3

Phase 2 (a little target domain data)

- ALL Mix both domain and target data with stratified randomization
- 2. **30-30** Match the number of target domain documents with an equal number of source domain documents \rightarrow Balanced training corpus

- 1. Task Description
- 2. Medical Event and Temporal Expression Extraction
- 3. Attribute and DCT Relation Classification
- 4. Containment Relation Extraction
- 5. Input Embedding
- 6. Domain Adaptation
- 7. Results

Performance on Test Set - Phase 1

	STATIC			R	EPLAC	E	'17a	'16 b
	Р	R	F1	Р	R	F1	F1	F1
EVENT Span	.62*	.84*	.72*	.61	.84	.71	.72	.90
EVENT Modality	.55*	.75*	.64*	.54	.75	.62	.64	.86
EVENT Degree	.62*	.83*	.71*	.60	.83	.70	.71	.90
EVENT Polarity	.60*	.82*	.69*	.59	.82	.68	.69	.89
EVENT Type	.61*	.82*	.70*	.59	.82	.69	.70	.88
TIMEX3 Span	.42	.66	.51	-	-	-	.57	.80
TIMEX3 Class	.40	.63	.49	-	-	-	.53	.77
DCT Relation	.44*	.60	.51*	.44	.60*	.51	.51	.76
CONTAINS	.28*	.40	.33*	.26	.41*	.32	.34	.48

^a Best performance for the phase (SemEval 2017)

Table: Results obtained by our system for phase 1

^b Best performance during Clinical TempEval 2016 (same domain for train and test)

^{*} Best performance between STATIC and REPLACE strategies

Performance on Test Set - Phase 2

		ALL30-30			'17a	'16 ^b	Φ_1^{c}		
	Р	R	F1	Р	R	F1	F1	F1	F1
EVENT Span	.69*	.85	.76*	.66	.87*	.75	.76	.90	.72
EVENT Modality	.63*	.78	.70*	.60	.78*	.68	.69	.86	.64
EVENT Degree	.68*	.84	.75*	.65	.85*	.74	.75	.90	.71
EVENT Polarity	.68*	.84	.75*	.64	.84*	.73	.75	.89	.69
EVENT Type	.68*	.83	.75*	.64	.84*	.73	.75	.88	.70
TIMEX3 Span	.51*	.67*	.58*	.45	.62	.52	.59	.80	.49
TIMEX3 Class	.49*	.64*	.55*	.43	.59	.50	.56	.77	.51
DCT Relation	.54*	.66	.59*	.51	.67*	.58	.59	.76	.51
CONTAINS	.24*	.44*	.32*	.21	.42	.28	.32	.48	.33

^a Best performance for the phase

Table: Results obtained by our system for phase 2

^b Best performance during Clinical TempEval 2016 (same domain for train and test)

^c Best score obtained by our system during phase 1

^{*} Best performance between ALL and 30-30 strategies

Performance on Test Set - Phase 2

		ALL			30-30		'17a	'16 ^b	Φ_1^{c}
	Р	R	F1	Р	R	F1	F1	F1	F1
EVENT Span	.69*	.85	.76*	.66	.87*	.75	.76	.90	.72
EVENT Modality	.63*	.78	.70*	.60	.78*	.68	.69	.86	.64
EVENT Degree	.68*	.84	.75*	.65	.85*	.74	.75	.90	.71
EVENT Polarity	.68*	.84	.75*	.64	.84*	.73	.75	.89	.69
EVENT Type	.68*	.83	.75*	.64	.84*	.73	.75	.88	.70
TIMEX3 Span	.51*	.67*	.58*	.45	.62	.52	.59	.80	.49
TIMEX3 Class	.49*	.64*	.55*	.43	.59	.50	.56	.77	.51
DCT Relation	.54*	.66	.59*	.51	.67*	.58	.59	.76	.51
CONTAINS	.24*	.44*	.32*	.21	.42	.28	.32	.48	.33

^a Best performance for the phase

Table: Results obtained by our system for phase 2

^b Best performance during Clinical TempEval 2016 (same domain for train and test)

^c Best score obtained by our system during phase 1

^{*} Best performance between ALL and 30-30 strategies

Conclusion

Present work

- Our models perform well for most tasks except for TIMEX3 extraction
- Training with no target domain data is hard
- Little target domain data significantly improves performance
- ▶ More data seem to work better than having a balanced dataset

Future work

- lacktriangle Take into account left and right contexts ightarrow Done!
- Joint learning of entities and relations
- Predict coherent temporal graphs
- Switch to neural architecture for attribute classification

Thank You

LIMSI-COT at SemEval-2017 Task 12 Neural Architecture for Temporal Information Extraction from Clinical Narratives

<u>Julien Tourille</u>^{1,2,3}, Olivier Ferret⁴, Xavier Tannier^{1,2,3}, Aurélie Névéol^{1,3}

LIMSI, CNRS
 Univ. Paris-Sud
 Université Paris-Saclay

⁴ CEA, LIST, Gif-sur-Yvette, F-91191 France

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. "Algorithms for Hyper-Parameter Optimization". In: *Advances in Neural Information Processing Systems 24*. Ed. by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates, Inc., 2011, pp. 2546–2554.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo A. Celi, and Roger G. Mark. "MIMIC-III, a freely accessible critical care database". In: *Scientific Data* 3 (May 2016).

Guergana K. Savova, James J Masanz, Philip V. Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C. Kipper-Schuler, and Christopher G. Chute. "Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications". In: *Journal of the American Medical Informatics Association* 17.5 (2010), pp. 507–513.

Jannik Strötgen and Michael Gertz. "A Baseline Temporal Tagger for all Languages". In: *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*. Lisbon, Portugal: Association for Computational Linguistics, Sept. 2015, pp. 541–547.

Julien Tourille, Olivier Ferret, Xavier Tannier, and Aurélie Névéol. "Neural Architecture for Temporal Relation Extraction: A Bi-LSTM Approach for Detecting Narrative Containers". In: *Proceedings of the 55th Conference of the Association for Computational Linguistics*. Vancouver, Canada: Association for Computational Linguistics, Aug. 2017.